
Decoding Hardware Requirements for
Fault-Tolerant Quantum Computation

Nicolas Delfosse - Microsoft
Quantum Resource Estimation Workshop – May 30th, 2020

with Poulami Das, Chris Pattison, Bobbie Manne, Doug Carmean, Krysta Svore, Moin Qureshi

2

Our decoder is fast enough

The lazy decoder can save
99.9% of the decoding hardware

The Decoding Problem

Objective:
Design a decoder for 1,000 logical qubits1,2,3.

In this talk:
• Surface code4,5

• Qubit / gate error rate p = 𝟏𝟎#𝟑

Decoder

Syndrome
data

Correction

d x d physical qubits
= 1 logical qubit

error rate p = 𝟏𝟎#𝟑

error rate p = 𝟏𝟎#𝟏𝟎
(after correction)

1. Gidney, Ekera (2020) https://arxiv.org/abs/1905.09749
2. Reiher et al. (2016) https://arxiv.org/abs/1605.03590
3. Campbell, Khurana, Montanaro https://arxiv.org/abs/1810.05582

4. Fowler et al. (2012) https://arxiv.org/abs/1208.0928
5. Litinski (2018) https://arxiv.org/pdf/1808.02892.pdf

3

https://arxiv.org/abs/1905.09749
https://arxiv.org/abs/1605.03590
https://arxiv.org/abs/1810.05582
https://arxiv.org/abs/1208.0928
https://arxiv.org/pdf/1808.02892.pdf

Three Decoding Constaints

• (A) Acuracy: Identify the error with high probability.
• (L) Latency: Decoder runtime < 1 logical cycle
• (S) Scalability: Decode 1,000 logical qubits1 2,3 with low

hardware requirements.

To
o

Slo
w ?

LUT: Tomita, Svore (2014) https://arxiv.org/abs/1404.3747
TN: Bravyi, Sushara, Vargo (2014) https://arxiv.org/abs/1405.4883
MWPM: Dennis, et al. (2001) https://arxiv.org/abs/quant-ph/0110143
ML: Torlai, Melko (2016) https://arxiv.org/pdf/1610.04238.pdf
UF: Delfosse, Nickerson (2017) https://arxiv.org/abs/1709.06218

Our Results:
• We design a decoder with (A)(L)(S)

4

https://arxiv.org/abs/1404.3747
https://arxiv.org/abs/1405.4883
https://arxiv.org/abs/quant-ph/0110143
https://arxiv.org/pdf/1610.04238.pdf
https://arxiv.org/abs/1709.06218

Computer Architecture
Toolbox

5

Pipelining

24 hours 24 hours 24 hours

3 robots ⇒ 3x speedup:
• Building 1 car takes 3 days.
• Building 1,000 cars takes 1,003 days ≈ 1 day per car

6

Hardware Specialization

24 hours 24 hours 24 hours

Specialized robots:
• Faster processing using precomputed movements.
• Energy efficient.

Use specialized robots

7

Ressource Sharing

24 hours

12 hours 12 hours

Shared between two lines

24 hours

If a robot waits, share it:
• Save hardware (# robots)
• Save energy (waiting robots consume energy)

8

Hardware Accelerator for
the Union-Find Decoder

9

The Union-Find Decoder1

Why the Union-Find decoder?
• Fast: Complexity 𝑂(𝑛 𝛼 𝑛) with 𝛼 𝑛 < 5 for all practical applications*
• Performant: Correct any set of (d-1)/2 faults
• Flexible: works for surface codes and color codes on any lattice (even hyperbolic)

But also:
• Simple

1. UF: Delfosse, Nickerson (2017) https://arxiv.org/abs/1709.06218 10

* 𝛼 𝑛 < 5 if n is smaller than the number of atoms in the universe (1080)

https://arxiv.org/abs/1709.06218

The Union-Find Decoder1

z

Step 1: Graph Generator
• Grow clusters around syndrome
• Stop when the cluster contains

an even number of syndrome

Step 2: DFS
• Build a spanning tree for

each cluster

Step 3: Correction
• Reverse the spanning tree to

correct

z

zz

Z-Error

z

z

Syndrome node

1. UF: Delfosse, Nickerson (2017) https://arxiv.org/abs/1709.06218
11

https://arxiv.org/abs/1709.06218

Hardware Unit for the Graph-Generator

Memory requirement for 1,000 logical qubits:

Store and grow
Clusters in the STM

12

Hardware accelerator

Time step DFS Cor
1 C1

2 C2 C1

3 C3 C2

4 C4 C3

5 C4

Hardware acceleration:
• Memory read without fetching from off-

chip memory
• Speedup by pipelining

Pipepline speedup:
• Consider 4 clusters C1, C2, C3, C4 through

DFS and Cor:

V V

V V

V V

V

V

V

E E E E

E E E E

E E E E

E
E

E
E

E
E

E
E

E
E

E
E

Control Logic

Root Table

Size Table

Fusion Edge
 Stack (FES)

Parity and Traversal
Registers

Zero Data
Register (ZDR)

Spanning Tree
 Memory (STM)

Read/Write Interface Finite State
Machine

Edge Stack (S0)

Alternate
Edge Stack (S1)

Pending Edge
Stack

Control Logic

Syndrome Hold
Registers

Error Log
Read/Write
Interface

Graph-Generator (Gr-Gen) Depth-First Search (DFS) Engine Correction (Corr) EngineFast identification of syndrome nodes

5 steps instead of 8

Step 1: Graph Generator Step 2: DFS Step 3: Correction

13

Resource Optimization

14

Baseline design

…
Gr-Gen

DFS

Cor

Logical qubit 1

Gr-Gen

DFS

Cor

X-
sy

nd
ro

m
e

Z-
sy

nd
ro

m
e

Gr-Gen

DFS

Cor

Logical qubit 2

Gr-Gen

DFS

Cor

X-
sy

nd
ro

m
e

Z-
sy

nd
ro

m
e

Gr-Gen

DFS

Cor

Logical qubit 1,000

Gr-Gen

DFS

Cor

X-
sy

nd
ro

m
e

Z-
sy

nd
ro

m
e

For 1,000 logical qubits:
• 2,000 Gr-Gen units
• 2,000 DFS units
• 2,000 Cor units

15

Pipeline Optimization

Hardware saving:
• 50 % of Gr-Gen
• 75 % of DFS
• 75% of Cor
• 70 % of total memory

Estimate runtimes by
monte-carlo simulation:

• Gr-Gen is twice slower than DFS
• DFS and Cor have similar runtime

⇒ Gr-Gen

DFS

Cor

Logical qubit 2

Gr-Gen

X-
sy

nd
ro

m
e

Z-
sy

nd
ro

m
e

Logical qubit 1

X-
sy

nd
ro

m
e

Z-
sy

nd
ro

m
e

(2,1,1)-pipeline

Results for of d=11 surface code with p=10-3
16

Is the decoder fast enough?

Decoding time:
• (L) We must have decoding time < 11 𝜇𝑠.
• We obtain max decoding time = 325 ns.

Conclusion:
• Our decoder is fast enough.
• Even with shared resources.

with (2,1,1)-pipeline.

Runtime Estimation Model:
• Count reads
• 4GHz frequency and 4 cycles per 32-bit read
• Assume our cluster model
• Ignore write, some latency, queue processing

Results for of d=11 surface code with p=10-3
17

The lazy decoder

18

Requirements for RSA 2048 factorization

Resource estimation by Gidney and Ekera1:
• 20 millions qubits with error rate 10-3

• 10,000 logical qubits
• 8 hours

But decoding requirements are colossal2:
• 8.4 TBit/s of bandwidth
• 20,000 decoding units

1. Gidney, Ekera (2020) https://arxiv.org/abs/1905.09749
2. Delfosse (2020) https://arxiv.org/abs/2001.11427

Decoding
Unit

Readout
Device

Qubits

X 20,000

X 10,000

8.4 TBit/s

Data to reach pLog = 10-15

19

https://arxiv.org/abs/1905.09749
https://arxiv.org/abs/2001.11427

The lazy decoder1

Lazy decoder:
• It is a pre-decoder
• It only corrects easy error configurations

Decoding
Unit

Readout
Device

Qubits

X 20,000

X 10,000

8 TBit/s

Decoding
Unit

Readout
Device

Qubits

Lazy
Decoder

Less decoding
units

Less
bandwidth

20
1. Delfosse (2020) https://arxiv.org/abs/2001.11427

https://arxiv.org/abs/2001.11427

The Lazy Decoder

success success failure

Basic idea:
• Try to pair each syndrome node with

a neighbor
• If not possible, abort

Main feature:
• If the lazy decoder succeeds, the

correction retuned is guaranteed to
be optimal.

21

Lazy decoding algorithm

Input: Set 𝑆 of highlighted syndrome nodes
Output: Either a set E of edges pairing s or failure.

1. Initialize E = ∅.
2. Loop over highligted nodes 𝑣 ∈ 𝑆 and do:
3. If 𝑣 has a neighbor 𝑢 in 𝑆, add {𝑢, 𝑣} to E
4. Else if 𝑣 is a boundary add the half edge {𝑢,−} to E
5. Else return failure
6. If the number of ambiguous pairing is > 1 return failure

Ambiguous: Vertex paired to a boundary but could have been
paired to a neighbor.

Fully local
Easy to parallelize
Easy hardware implementation

The only global data
Easy to compute

22

Average bandwidth use per logical qubit

X1000
X10 Bandwidth saturation:

• No improvement with Lazy decoder
• Qubits and gates are too noisy

Lazy decoder saving:
• Large saving for p < 10-4

23

Hardware required to reach pLog = 10-12

• More qubits ⟹ Less bandwidth / decoding units per qubit

24

Back to RSA 2048 factorization

Decoding
Unit

Readout
Device

Qubits

X 20,000

X 10,000

8 TBit/s

With good qubits
(error rate = 10-4)

Decoding
Unit

Readout
Device

Qubits

Lazy
Decoder

42 GBit/s

X 377

With very good qubits
(error rate = 10-5)

Decoding
Unit

Readout
Device

Qubits

Lazy
Decoder

520 MBit/s

X 13

save 98% save 99.9%

25

The lazy decoder as a decoder accelerator

The lazy decoder:
• Speeds up any decoding algorithm
• Without deteriorating the performance

10x

50x

26

Conclusion
We design a decoder that is:
• Acurate
• Fast enough
• Scalable

Observations:
• Current qubits are not good enough for scalability.
• We need better qubits: aim at gate error rate p < 10-4

Future directions:
• Explore more precise noise models
• Adapte our micro-architecture to the recent version of the

UF decoder of Huang et al. (arxiv:2004.04693)

More hardware
sharing

Better qubits

Less errors

Faster decoding
units

27

https://arxiv.org/abs/2004.04693

V V

V V

V V

V

V

V

E E E E

E E E E

E E E E

E
E

E
E

E
E

E
E

E
E

E
E

Control Logic

Root Table

Size Table

Fusion Edge
 Stack (FES)

Parity and Traversal
Registers

Zero Data
Register (ZDR)

Spanning Tree
 Memory (STM)

Read/Write Interface Finite State
Machine

Edge Stack (S0)

Alternate
Edge Stack (S1)

Pending Edge
Stack

Control Logic

Syndrome Hold
Registers

Error Log
Read/Write
Interface

Graph-Generator (Gr-Gen) Depth-First Search (DFS) Engine Correction (Corr) Engine

Decoding
Unit

Readout
device

Qubits

Lazy
Decoder

Thank you!

28

