B® Microsoft Azure

Decoding Hardware Requirements for
-ault-Tolerant Quantum Computation

Nicolas Delfosse - Microsoft

Quantum Resource Estimation Workshop — May 30", 2020

with Poulami Das, Chris Pattison, Bobbie Manne, Doug Carmean, Krysta Svore, Moin Qureshi



Search...

arXiv.org > quant-ph > arXiv:2001.06598

Quantum Physics

[Submitted on 18 Jan 2020]

A Scalable Decoder Micro-architecture for Fault-Tolerant Quantum Computing
Poulami Das, Christopher A. Pattison, Srilatha Manne, Douglas Carmean, Krysta Svore, Moinuddin Qureshi, Nicolas Delfosse

Quantum computation promises significant computational advantages over classical computation for some problems. However, quantum

hardware suffers from much higher error rates than in classical hardware. As a result, extensive quantum error correction is required to Our decoder iS fast enough
execute a useful quantum algorithm. The decoder is a key component of the error correction scheme whose role is to identify errors faster

than they accumulate in the quantum computer and that must be implemented with minimum hardware resources in order to scale to the

regime of practical applications. In this work, we consider surface code error correction, which is the most popular family of error correcting

codes for quantum computing, and we design a decoder micro-architecture for the Union-Find decoding algorithm. We propose a three-

stage fully pipelined hardware implementation of the decoder that significantly speeds up the decoder. Then, we optimize the amount of
decoding hardware required to perform error [E19 (VAT{e I [TET &1 W19 (10 [0 i B B K- ¥ 4
resources between logical qubits, we obtain a
Moreover, we reduce the bandwidth required

Search...

Quantum Physics

Finally, we provide numerical evidence that ot
computer. [Submitted on 30 Jan 2020]

Hierarchical decoding to reduce hardware requirements for quantum computing
Nicolas Delfosse

Extensive quantum error correction is necessary in order to scale quantum hardware to the regime of practical applications. As a result, a
significant amount of decoding hardware is necessary to process the colossal amount of data required to constantly detect and correct
errors occurring over the millions of physical qubits driving the computation. The implementation of a recent highly optimized version of
Shor's algorithm to factor a 2,048-bits integer would require more 7 TBit/s of bandwidth for the sole purpose of quantum error correction
and up to 20,000 decoding units. To reduce the decoding hardware requirements, we propose a fault-tolerant quantum computing
The Iazy decoder can save architecture based on surface codes with a cheap hard-decision decoder, the lazy decoder, combined with a sophisticated decoding unit
that takes care of complex error configurations. Our design drops the decoding hardware requirements by several orders of magnitude
99.9% of the dECOding hardware assuming that good enough qubits are provided. Given qubits and quantum gates with a physical error rate p = 1074, the lazy decoder
drops both the bandwidth requirements and the number of decoding units by a factor 50x. Provided very good qubits with error rate
p= 10"5, we obtain a 1,500x reduction in bandwidth and decoding hardware thanks to the lazy decoder. Finally, the lazy decoder can be
used as a decoder accelerator. Our simulations show a 10x speed-up of the Union-Find decoder and a 50x speed-up of the Minimum 2
Weight Perfect Matching decoder.



The Decoding Problem

error rate p=10~10
(after correction)

Objective: N
Design a decoder for 1,000 logical qubits®--3.
Syndrome Correction
data
In this talk:
e Surface code*>
e Qubit/ gate error ratep=103  _ _ 1 SR
:‘:’:’:‘,::':':::::-' :::: error rate p= 1073

d x d physical qubits
= 1 logical qubit
1. Gidney, Ekera (2020) https://arxiv.org/abs/1905.09749

2. Reiher et al. (2016) https://arxiv.org/abs/1605.03590 4. Fowler et al. (2012) https://arxiv.org/abs/1208.0928 3
3. Campbell, Khurana, Montanaro https://arxiv.org/abs/1810.05582 5. Litinski (2018) https://arxiv.org/pdf/1808.02892.pdf



https://arxiv.org/abs/1905.09749
https://arxiv.org/abs/1605.03590
https://arxiv.org/abs/1810.05582
https://arxiv.org/abs/1208.0928
https://arxiv.org/pdf/1808.02892.pdf

Three Decoding Constaints

* (A) Acuracy: Identify the error with high probability.
* (L) Latency: Decoder runtime < 1 logical cycle

* (S) Scalability: Decode 1,000 logical qubits® %3 with low
hardware requirements.

Our Results:
 We design a decoder with (A)(L)(S)

Decoder Acuracy Latency | Scalability
LUT Very High §
TN Very high O

MWPM | High to Very high| 3 ?
ML High O ¢
UF High N

LUT: Tomita, Svore (2014) https://arxiv.org/abs/1404.3747

TN: Bravyi, Sushara, Vargo (2014) https://arxiv.org/abs/1405.4883
MWPM: Dennis, et al. (2001) https://arxiv.org/abs/quant-ph/0110143
ML: Torlai, Melko (2016) https://arxiv.org/pdf/1610.04238.pdf

UF: Delfosse, Nickerson (2017) https://arxiv.org/abs/1709.06218



https://arxiv.org/abs/1404.3747
https://arxiv.org/abs/1405.4883
https://arxiv.org/abs/quant-ph/0110143
https://arxiv.org/pdf/1610.04238.pdf
https://arxiv.org/abs/1709.06218

Computer Architecture
Toolbox



Pipelining

TS 4R

24 hours 24 hours 24 hours

3 robots = 3x speedup:
* Building 1 car takes 3 days.
e Building 1,000 cars takes 1,003 days = 1 day per car



Hardware Specialization

Use specialized robots

A (| ) — dh

24 hours 24 hours 24 hours

Specialized robots:

Faster processing using precomputed movements.
Energy efficient.



©§.o
/N
1 N
24 hours
&0
an
24 hours

Ressource Sharing

Shared between two lines

AN ‘ an
e R B

12 hours 12 hours

If a robot waits, share it:
* Save hardware (# robots)
* Save energy (waiting robots consume energy)

O
A



Hardware Accelerator for
the Union-Find Decoder



The Union-Find Decoder?

Why the Union-Find decoder?

* Fast: Complexity O(n a(n)) with a(n) < 5 for all practical applications*

* Performant: Correct any set of (d-1)/2 faults

* Flexible: works for surface codes and color codes on any lattice (even hyperbolic)

But also:
 Simple

* a(n) < 5 if nis smaller than the number of atoms in the universe (108°)

1. UF: Delfosse, Nickerson (2017) https://arxiv.org/abs/1709.06218

10


https://arxiv.org/abs/1709.06218

The Union-Find Decoder?

Z-Error Syndrome node
Step 1: Graph Generator Step 2: DFS Step 3: Correction
* Grow clusters around syndrome ¢ Build a spanning tree for * Reverse the spanning tree to
e Stop when the cluster contains each cluster correct

an even number of syndrome

11
1. UF: Delfosse, Nickerson (2017) https://arxiv.org/abs/1709.06218



https://arxiv.org/abs/1709.06218

Hardware Unit for the Graph-Generator

Memory requirement for 1,000 logical qubits:

Store and grow
Clusters in the STM

Design Component | Baseline | Optimized Design | Savings
STM (Gr-Gen) 1.97 MB 0.99 MB (2X)
Root Table (Gr-Gen) | 3.17 MB 0.79 MB (4X)
Size Table (Gr-Gen) |3.46 MB 0.87 MB (4X)
Stacks (DFS Engine) | 1.35 MB 0.34 MB (4X)
Total 9.96 2.81 (3.5X)

rg
VIE[E|V|E|E|V
E E E
; E E E
Spanning Tree Gi=rEIEENV 1<
Memory (STM) [E E E
E E E
VIE|E|V|E|E|V
FFOOt Table Read/Write Interface
. - Control Logic
Zero Data
Size Table Register (ZDR)
| I |
| || |
Parity and Traversal
Fusion Edge ~ hegisters
Stack (FES)

12




Hardware accelerator

V|E|E|V|E|E|V
El | [E[ | [E | |
Spanning Tree \E/ E E\E ElE \E/ < i |
Hardware acceleration: Memory (STM) \ELILIEL |12
: . VIE[EVIEEV | Edge Stack (S0) |
« Memory read without fetching from off- Root Table [Reagirte nteface | . | crorog
Ch|p memory — l ' Machine i v Rle?dr{fWrite
jk ntertace
° Speedup by plpellnlng -~ > Control Logic — l v | ' Control Logic ~a——
Size Table I I I Register (ZDR)| I 4 i
¢ ;
Pipepline speedup: | | Syndrome Hold
. Parlty and Traversal Pendmg Edge Alternate Registers
* Consider 4 clusters Cy, Gy, C3, Cy th rough Fusion Edge  Redisters | stack Edge Stack (S1) |
DFS and Cor: Stack (FES) I I
P Step 1: Graph Generator Step 2: DFS Step 3: Correction
1 C
2 C, G
3 GG G
4 . G
5 Cq4 5 steps instead of 8

13



Resource Optimization



Baseline design

Cor Cor Cor Cor Cor Cor

7 A a a a a

A A

For 1,000 logical qubits:
e 2,000 Gr-Gen units

e 2,000 DFS units

e 2,000 Cor units

)
)
M
wn

—

r-Gen r-Gen

X-syndrome
Z-syndrome
X-syndrome
Z-syndrome
X-syndrome
Z-syndrome

Logical qubit 1 Logical qubit 2 Logical qubit 1,000



DFS Engine Execution Cost

(@)}
o

N W b U
o O O o

=
o

o

Pipeline Optimization

Estimate runtimes by
monte-carlo simulation:

Gr-Gen Engine Execution Cost

Gr-Gen is twice slower than DFS
DFS and Cor have similar runtime

Hardware saving:

(2,1,1)-pipeline

=

syndrome
Z-syndrome
syndrome
Z-syndrome

X

X

50 % of Gr-Gen

75% of Cor

70 % of total memory 16
Results for of d=11 surface code with p=10-3



s the decoder fast enough?

Decoding time:
* (L) We must have decoding time < 11 us.

ith (2,1,1)-pipeline.
 We obtain max decoding time = 325 ns. with ( )-pipeli

100 | | | | | | |

Conclusion: 103
* Our decoder is fast enough.
* Even with shared resources.

Probability
=
o

0 50 100 150 200 250 300 350 400

Runtime Estimation Model: Estimated Execution Time [ns]
. Count reads

*  4GHz frequency and 4 cycles per 32-bit read
*  Assume our cluster model

* lIgnore write, some latency, queue processing 17
Results for of d=11 surface code with p=10-3



The lazy decoder



1.
2.

Requirements for RSA 2048 factorization

Resource estimation by Gidney and Ekera’:

* 20 millions qubits with error rate 103 X 20,000
* 10,000 logical qubits
* 8 hours
8.4 TBit/s

But decoding requirements are colossal?:
e 8.4 TBit/s of bandwidth
* 20,000 decoding units

X 10,000

Gidney, Ekera (2020) https://arxiv.org/abs/1905.09749
Delfosse (2020) https://arxiv.org/abs/2001.11427 Data to reach pLog = 10-15

19


https://arxiv.org/abs/1905.09749
https://arxiv.org/abs/2001.11427

1.

The lazy decoder?!

Lazy decoder:

* Itis a pre-decoder

X 20,000

8 TBit/s

* It only corrects easy error configurations

Delfosse (2020) https://arxiv.org/abs/2001.11427

X 10,000

Less decoding
units

Less
bandwidth

20


https://arxiv.org/abs/2001.11427

The Lazy Decoder

] X ] l R N | |
Basic idea:
?? K— ?? Jéﬁ ?? ¢£L . asi'crietii}s;rreach syndrome node with

* If not possible, abort

Main feature:
* If the lazy decoder succeeds, the
correction retuned is guaranteed to

l’\i IJ
NF le a
f\&r\ﬁ
Nxﬁ

N
NN
l&l B
ANEEAN

-

N

VRN

N
S
N
S
N

be optimal.

success success failure

21



Lazy decoding algorithm

Input: Set S of highlighted syndrome nodes
Output: Either a set E of edges pairing s or failure.

1. Initialize E = 0.

2. Loop over highligted nodes v € S and do:

3. If v has a neighbor uin S, add {u, v}toE

4. Else if v is a boundary add the half edge {u,—} to E
5 Else return failure

6. If the number of ambiguous pairing is > 1 return failure

Ambiguous: Vertex paired to a boundary but could have been
paired to a neighbor.

Fully local
Easy to parallelize
Easy hardware implementation

The only global data
Easy to compute



Average bandwidth use per logical qubit

Average bandwidth use with the lazy decoder

1010

108

Bandwidth saturation regime

106 -
w/o lazy dec. d=35
w/ lazy dec. d=35
w/o lazy dec. d=25
10° w/ lazy dec. d=25
----- w/o lazy dec. d=15
—e— W/ lazy dec. d=15
----- w/o lazy dec. d=5
—eo— W/ lazy dec. d=5
102 y—r—r—rr S — et
107 1074 1073 1072

Physical error rate p (circuit noise)

Bandwidth saturation:
* No improvement with Lazy decoder
* Qubits and gates are too noisy

Lazy decoder saving:
e Large saving for p<10*

23



Hardware required to

Bandwidth required per logical qubit (Bit/s)

10° 5

107 5
106 3

10° 3

108 Fooeo

10* 4 --e- w/o lazy dec.
] —e— w/ lazy dec. K = 100
103_; —— w/ lazy dec. K = 1,000
3 —e— w/ lazy dec. K = 10,000
] —e— W/ lazy dec. av. bandwidth
10? —— —
1073 1074 1073

Physical error rate p (circuit noise)

reach p o, = 10

Number of decoding units required

10° 3

=

o
S
!

=

o
[¥]
!

=

o
N
!

=

o
-
I

100 y — 1 :
1073 1074 1073

------ w/o lazy dec. K=10,000
—e— w/ lazy dec. K=10,000
------ w/o lazy dec. K=1,000
—e— W/ lazy dec. K=1,000
------ w/o lazy dec. K=100
—e— W/ lazy dec. K=100

Physical error rate p (circuit noise)

* More qubits = Less bandwidth / decoding units per qubit

24



Back to RSA 2048 factorization

With good qubits With very good qubits
(error rate = 10%) (error rate = 10°)
X 20,000 X377 X13
1 save 98% t save 99.9%
8 TBit/s 42 GBit/s 520 MBit/s

X 10,000

25



The lazy decoder as a decoder accelerator

The lazy decoder:
* Speeds up any decoding algorithm

* Without deteriorating the performance

0.001

Execution time for pZ

1073

=
o
|

IS

107> E

1077

1
—————————
_—_
rrrr
’f

-
e
4

-
[I—
L=

-
-

—eo- None + UF
—e— Lazy + UF
—-e- None + MWPM
—e— Lazy + MWPM

200 400 600 800
Number of physical qubits

1000 1200

26



Conclusion

We design a decoder that is:
* Acurate

* Fast enough

Better qubits
* Scalable

oh - ' More hardware
servations: sharing

e Current qubits are not good enough for scalability.
* We need better qubits: aim at gate error rate p < 10 Faster decoding
units

Future directions:

Less errors

* Explore more precise noise models

* Adapte our micro-architecture to the recent version of the
UF decoder of Huang et al. (arxiv:2004.04693) -



https://arxiv.org/abs/2004.04693

Thank youl!

N

N i |
' 1
' 1
' 1
! VIE[E[V[E[E[V 1
) | El | [E[ | [E | | '
I 1
A 1 Spanning Tree \E/ E E\E e 5 < R I '
' Memory (STM) (B [ [E[ | [E ! !
E E E

: VEEVEEV | Edge Stack (S0) | !
1 . .
! Root Table IReadNVrlte Interface | Finite State | Error Log :
1 : Machine * Read/Write 1
b. t X e l Y I Interface '
QU ItS 1 — Control Logic = _je—> ; Control Logic ~a—— !
' Zero Data v l ) :
! Size Table I Register (ZDR) i i !
! 1 1 I | :
! [ — | E | Syndrome Hold .
: Parity and Traversal Pending Edge Alternate Registers :
' Fusion Edge  hHegisters | stack Edge Stack (S1) | !
: Stack (FES) ' I :

1
! Graph-Generator (Gr-Gen) Depth-First Search (DFS) Engine Correction (Corr) Engine |
1

28



