Quasilinear Time Decoding Algorithm for Topological Codes with High Error Threshold

Mark Shui HuB.A. Applied PhysicsDavid ElkoussProf.

Contents

Surface codes

- Minimum-Weight Perfect Matching decoder
- Union-Find decoder
- Matching weight heuristic
 - Union-Find Balanced-Bloom decoder

Minimum-Weight Perfect Matching decoder

Worst case time complexity $O(n^2\sqrt{n})$

Union-Find decoder

- Nontrivial syndrome: odd-parity *cluster*
- Grow odd-parity clusters in size until merged with other odd-parity cluster
- Apply weighted growth: order cluster growth by size
- Tree by DFS
- Peel cluster-trees

0

0

0

Union-Find decoder performance

- Reported thresholds
 - toric 2D: 9.2% (weighted 9.9%)
 - toric 3D: 2.4% (weighted 2.6%)

Decoders

Decoder	2D toric threshold	3D toric threshold	Complexity
MWPM decoder	10.3% 10.35%	2.9% 2.97%	$O(n^2\sqrt{n})$
UF decoder	9.9% 10.01%	2.6% 2.70%	$O(n\alpha(n))$

Matching weight heuristic

Intuition that lower matching weight is a heuristic for increased threshold

Dynamic forests during growth

- 1. Grow cluster graph
- 2. Make cluster tree
- 3. Peel tree

- 1. Grow cluster tree
- 2. Peel tree

• •

Dynamic forest equivalent to parallel breadth-first searches from the syndromes

Matching weight heuristic

Threshold

9.71%

9.79%

9.98%

10.01%

10.35%

Decoder

UF-xW-xDF

UF-xW-DF

UF-W-xDF

UF-W-DF

MWPM

Comparison of matching weight, normalized to MWPM

Intuition that lower matching weight is a heuristic for increased threshold

Decoders

Intuition that lower matching weight is a heuristic for increased threshold

Decoder	2D toric threshold	3D toric threshold	Complexity
MWPM decoder	10.3% 10.35%	2.9% 2.97%	$\mathcal{O}(n^2\sqrt{n})$
UF decoder	9.9% 10.01%	2.6% 2.70%	$O(n\alpha(n))$

Union-Find Balanced-Bloom decoder

- Potential matching weight
- Data structure: node trees
- Node delays
- Calculation
- Performance

Potential matching weight

• Cluster C is a graph $C(\mathcal{E}, \mathcal{V})$

• $\mathsf{PMW}(v \in \mathcal{V}, C)$

The matching weight of edges in *E* after a hypothetical union of *C* with another cluster on an edge supported by *v*.

- <u>Minimize weight by prioritizing growth</u>
- Vertex specific
- Local variable

Node tree data structure

- node *n* represents a subset of vertices of a cluster *C* $\mathcal{V}_n \subseteq \mathcal{V}$ for which the vertices are *seeded* in the same vertex v_{seed} .
- Let a cluster by additionally represented by a set of nodes $\mathcal{N} = \{n_1, n_2, \dots\}$.

- Boundary vertices in the same node have equal PMW.
- Calculation of PMW reduced to the node tree
- Prioritize node specific growth with low PMW

Node delays

Bloom of a node: Growing the boundaries belonging to a node *n*

Delayed bloom:

To suspend the bloom of a node for # iterations until an *equilibrium* of PMW is reached in the cluster → **Balanced Bloom**

- Delay is calculated via DFS of the node tree
- $Delay(n_i) = f(n_i, n_{i-1})$

Weighed Union-Find

Union-Find Balanced-Bloom

Node delay calculation

$$n_{\beta}.p = \begin{cases} 0, & \text{if } n_{\beta} \text{ has no children} \\ \left(\sum_{j} 1 - n_{\gamma,j}.p\right) \mod 2 \mid n_{\gamma} \text{ child of } n_{\beta}, & n_{\beta} \equiv s_{\beta} \\ 1 - \left(\sum_{j} 1 - n_{\gamma,j}.p\right) \mod 2 \mid n_{\gamma} \text{ child of } n_{\beta}, & n_{\beta} \equiv l_{\beta} \end{cases}$$

$$n_{\beta}.d = n_{\alpha}.d + \left\lceil \left(\left\lfloor \frac{(n_{\beta}.r + n_{\beta}.g)}{2} \right\rfloor - \left\lfloor \frac{(n_{\alpha}.r + n_{\beta}.g)}{2} \right\rfloor + (-1)^{n_{\beta}.p+1}(n_{\alpha}, n_{\beta}) \right) - (n_{\beta}.g + n_{\alpha}.g) \mod 2 \right\rceil + (n_{r}.d = 0, \ n_{\beta} \text{ child of } n_{\alpha}$$

Node tree unions

After union, tree structure changes: recalculate delay

- Union of odd/odd clusters \rightarrow even cluster, no PMW
- Union of even/even clusters \rightarrow even cluster, no PMW
- Union of odd/even clusters \rightarrow odd cluster

Delay preservation union:

Preserve calculated delays in odd cluster by pointing merging node of the even cluster to the odd cluster.

Worst case complexity $\mathcal{O}(n \log n)$

Relevant data structures

Function	Cluster identification	Potential matching weight
Tree structure	Edges are parent pointers	Reduced graph of cluster
Tree deformation	Path compression	No
Tree merge	Weighted union	Node tree union

Worst case complexity $\mathcal{O}(n \log n)$

UF-BB performance

UF-BB threshold

Investigate *small* lattice sizes

Investigate *bigger* lattice sizes

UF-BB threshold

Conclusions

- The performance of the UF-BB decoder is better than vanilla UF decoder for all lattice sizes and comparable to MWPM for small and medium lattice sizes with quasilinear complexity
- Lower matching weight is a heuristic for increased threshold

Code used for simulation, visualization can be found at <u>https://github.com/watermarkhu/oop_surface_code</u>